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Variable Radiative Surfaces - Application

• Spacecraft experience 
varying thermal 
environments

• Radiators are sized to 
reject the maximum 
heat load, resulting in 
non-ideal radiator heat 
loss for a portion of the 
spacecraft’s lifetime
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• A radiator capable of varying its thermal radiative properties would 

reject the ideal amount of heat to the environment at all times

Variable Radiative Surfaces - Application

High 

Emissivity

Reject as 

much  heat as 

possible

Low Emissivity 

Hold in as 

much  heat as 

possible
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Variable Radiative Surfaces - Application
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• Variable Emissivity Devices would save weight and power
• 5-7% of spacecraft power is heater related1

• 2-10% of spacecraft dry weight is thermal control1

• Expected power savings from variable emissivity: 90 - 75%1

• Variable Emissivity Devices would be especially useful for smaller 
spacecraft, such as CubeSats

• Smaller thermal mass means larger temperature swings

• Less power available for heaters

• Higher watt density due to compact electronics

[1] – Gilmore, David G. “Spacecraft Thermal Control Handbook: Technology Projections.” 2002. 2nd Edition.

How do we modify radiative heat transfer in real time?



The Cavity Effect - Definition

• Reflections inside a cavity result in increased apparent absorptivity

• Apparent properties depend on cavity geometry
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The Cavity Effect - Definition

• A cavity concentrates emission from all internal surfaces to the cavity 

opening, increasing the apparent emission from the opening
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• Different surfaces give different performance

• Deep cavities result in near black behavior 

• Cavity emission is highly directional, allowing for control of 

directional radiative heat transfer

The Cavity Effect - Benefits
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How do we modify radiative heat transfer in real time?



• Origami tessellations control cavity aspect ratio through actuation

• But what are the apparent radiative properties? 

• How would these be applied to a real scenario?

The Cavity Effect – Origami
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1. Demonstrate a change in apparent properties with geometry

2. Characterize the apparent emissivity and apparent absorptivity of 

four tessellations

3. Validate the ability of a dynamically-actuated tessellation to control 

temperature when exposed to a varying thermal environment.

4. Develop initial radiator prototypes

Research Objectives
10



OBJECTIVE 1

Demonstrate a change in apparent properties with geometry

11



( )
sin sin

2 2

a B

P P

Gd U t

dt wC wC

  


 

    
     

    

Objective 1 - Approach
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• A piece of aluminum shim stock folded into an accordion tessellation 

was repeatedly heated and cooled in ambient conditions

• The cooling temperature curve gave information about heat losses

• The heating energy balance gave an expression for absorptivity



• Inverse model results2 were compared to Sparrow’s work3

• Apparent absorptivity increase is experimentally verified
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Sparrow’s Equations

Objective 1 – Results

[2] – Mulford et al. “Dynamic control of radiative surface properties with origami-inspired design" 2016. JHT. 

[3] – Sparrow and Lin. “Absorption of thermal radiation in a V-groove Cavity.” 1962. IJHMT 5.



OBJECTIVE 2

Characterize the apparent radiative properties of four origami 

tessellations
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• Models must be developed to characterize the apparent 

radiative properties of origami tessellations

• Benefits

– Easy to fold, similar to infinite V-groove.

– Collapses and expands, allowing for storage

– Easy to model and test

Objective 2 - Definition

Accordion



• Benefits

– Maintains a constant projected surface area while actuating

– Two geometry parameters for control

Objective 2 - Definition
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Hinged V-groove



• Benefits

– Linear actuation results in 3D movement

– Three geometry parameters for control

– Collapses and expands, allowing for storage

Objective 2 - Definition
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Miura-Ori



Objective 2 - Definition
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Barreto’s Mars

• Benefits

– Cavities collapse to one side, giving a large absorptivity in one direction 

and great reflectivity in the other direction

– Collapses to a finite area

– Would give interesting directional behavior



Objective 2 – Approach: Ray Tracing

• Rays are emitted from a surface or irradiated onto a surface.

• This approximates an isothermal surface (for emission).

• The number of rays emitted (Nemit) and the number of rays 

absorbed by the cavity (Nabsorbed) are counted.
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escapeemit
a

open emit

NA

A N
 

  
    

  

diffuse emission

diffuse irradiation
absorb

a a

emit

N

N
  

19



Objective 2 – Results: Ray Tracing

Infinite V-groove – Diffuse Irradiation
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Objective 2 – Results: Ray Tracing
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Infinite V-groove

• Accordion fold results will be similar to infinite V-groove but will 
depend on the length of the panels as well.

Collimated Irradiation – Steep Inclination Diffuse Irradiation 



Objective 2 – Results: Ray Tracing

Miura-Ori Modified V-groove
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OBJECTIVE 3

Validate the ability of a dynamically-actuated tessellation to control 

temperature when exposed to a varying thermal environment.
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• This work will explore the use of origami tessellations as variable 
emissivity radiators for spacecraft applications

• To this end, two experiments will be conducted
– Quantify the net rate of radiative heat exchange with the surroundings

– Validate the ability of the surface to maintain a given thermal condition in 
a changing thermal environment

Objective 3 - Definition
24
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Objective 3 – Approach: Net Rad HT

• Consider a flat or folded tessellation subjected to uniform heat 
generation inside of a vacuum environment.

Diffuse or Collimated Irradiation / Diffuse or Specular Reflection
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Objective 3 – Approach: Net Rad HT

• Experimental methods are used to validate the model.

• A sample is heated internally in a vacuum chamber evacuated to 
below 10-5 Torr. A thermal camera records apparent temperature 
data through the sapphire window.
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Objective 3 – Results: Net Rad HT

• Diffuse reflection: net radiative heat transfer decreases as the 
tessellation collapses despite increasing radiative properties

• Specular reflection and collimated irradiation: large changes in 
radiative properties over small periods are possible
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• Flat and folded experimental results both fall within the bounds 

established by experimental error

Objective 3 – Results: Net Rad HT
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• A motorized accordion fold is exposed to varying levels of 
environmental radiation

• The fold is actuated to the proper cavity angle to maintain steady 
state conditions

Objective 3 – Approach: Environment
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OBJECTIVE 4

Develop Initial Radiator Prototypes
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Objective 4 – Final Design Considerations
31

How do you get the waste heat to the radiator?

How will heat conduct along/between panels?

How will the tessellations be actuated?



Objective 4 - Radiator Concept #1

• Radiator could be built into an existing panel

• The modified V-groove maintains a constant surface area

• Heat pipes bring the heat load from the spacecraft or heat is 
present on the back of the panel

High Heat Load

Low Heat Load

Heat Pipe

SMA or

Bias Spring

Main Problem:

What do we fill

the gap with?
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Composite

Panel 

(Below)

Hinge 

Assembly

(Below)

Benefits:

1) Low weight 

due to the 

compliant 

hinge

Challenges:

1) Requires 

constraint

2) Requires 

conductive, 

compliant 

material
Compliant Conducting 

Material

Shape Memory 

Alloy

Bias Spring (if needed. 

Compliant material 

should be spring)

VERY conductive filler (heat pipes, carbon 

sheets, etc.)

Thin, coated 

aluminum sheet 

(for rigidity)

Rivet the composite

panel together and secure

with thermal epoxy

Objective 4 - Radiator Concept #2
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Fin Efficiency

TFAWS 2017 – August 21-25, 2017 34

• What is the fin efficiency?

• Consider panel width, length, thickness, etc.



Objective 4 - Radiator Concept #3

Cold Case

Hot Case
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FUTURE WORK
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• Moderately shallow cavities exhibit highly directional behavior, 

largely ignoring emission and absorption at glancing angles

• This could be utilized to ignore unwanted inputs (solar, albedo, 

instrument heat loss, etc.)

Future Work - Directionality
37
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• U(t) characterizes conductive, convective and radiative heat losses
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Objective 1 – Approach
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• Volume ratio accounts for increasing mass in control volume as 

sample is actuated

• Different origami folds would have different ratios
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Objective 1 – Approach
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• At steady state, the energy balance gives absorptivity as a function 

of G, θSS and Umax
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• All solutions require experimental temperature 

measurements

Objective 1 - Approach
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Heat Loss Term Heat Addition Term

Objective 1 – Definition / Approach

• Validate the use of origami tessellations as variable emissivity surfaces

• Experimentally determine the apparent absorptivity of an accordion fold 

as a function of angle
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Integrating Factor 

Method 
Direct Method
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Objective 1 - Approach
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• Flat sample was measured with a reflectometer

• Independent verification of inverse model results
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Test #

Spectral Range (Micrometers)

1.5 – 2.0 2.0 – 3.5 3.0 – 4.0 4.0 – 5.0 5.0 – 10.5 10.5 – 21.0

Spectral Reflectivity

1 0.965 0.969 0.966 0.977 0.982 1.005

2 0.967 0.972 0.971 0.973 0.983 1.01

3 0.965 0.969 0.973 0.977 0.98 0.986

Emissometer Absorptivity 0.028

Steady State Model Absorptivity 0.028

Objective 1 – Results
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• Apparent absorptivity results with respect to time for the three methods

• All solutions converge to one value
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Objective 1 – Results



Ray Tracing – Emissivity Thermal Model
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Rearrange to give apparent emissivity

From the definition of Qemit

Plug into apparent emissivity equation

Using the original energy balance 

and equating thermal model to ray 

tracing results gives:



Ray Tracing – Absorptivity Thermal Model
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Assuming opaque

Final Expression

From Ohwada[1] we learn that 

apparent absorptivity and apparent 

emissivity are equivalent for an 

isothermal cavity
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[1] - Ohwada, Y. 1988 “Mathematical proof of an extended Kirchoff

Law for a cavity having direction-dependent characteristics” Journal 

of the Optical Society of America 5(1). 141-145.



• Apparent emissivities below the intrinsic surface value are a result of 

the area of the sides

• Values above unity are not possible and are due to large error 

experienced at very small angles and high emissivities

Results – Accordion: 
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Results - Accordion
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• All cases showed a convergence of 0.2% or less. The extreme 
cases are shown here (L/S = 1 or 5 and emissivity = 0.028 or 
0.9)


